CHEMISTRY - MODULE A

Degree course: 
Corso di First cycle degree in ENGINEERING FOR WORK AND ENVIRONMENT SAFETY
Academic year when starting the degree: 
2022/2023
Year: 
1
Academic year in which the course will be held: 
2022/2023
Course type: 
Basic compulsory subjects
Seat of the course: 
Varese - Università degli Studi dell'Insubria
Credits: 
9
Period: 
First Semester
Standard lectures hours: 
80
Detail of lecture’s hours: 
Lesson (56 hours), Exercise (24 hours)
Requirements: 

It is essential condition for addressing issues of Module A of the course the knowledge of concepts and basic fundamentals of mathematics (eg integral, exponential, logarithm, derivative, vector, tensor, matrix ...) and physical (eg the concepts of force, pressure, speed, potential energy, kinetic energy ...).

The examination for Module A consists in a written test of typically 2.5 h duration. Both fundamentals of chemistry and exercises of stoichiometry will be included. The test related to the topics of Module A is a written exam lasting 3 hours. These are multiple choice questions in sufficient numbers to cover all the topics covered in class, including stoichiometry exercises. The questions may contain problems and exercises with calculations, balance of reactions. Each correct answer is given 1 point, while the wrong answers are subtracted 0.5 points and the questions left without an answer are given a zero score. Each of the two teaching modules provides a final test and given a rating. The outcome of each trial is thirty: the test is deemed passed if the candidate gets a vote of at least 18/30. The final grade is the average, weighted on the number of credits, the outcome of the two tests.The final mark is the weighted average of the written tests of Module A and Module B respectively with a weight of 9/15 (nine / fifteenth) and 6/15 (six / fifteenth). Both tests must be passed with at least the result of 18/30. The teachers positively evaluate the use of an appropriate and appropriate scientific language in addition to the knowledge of the contents for the attribution of a positive evaluation. An oral exam can be defined as a description of the teachers.

Assessment: 
Voto Finale

Module A of the course (9 CFU of which 7 CFU lectures, 2 CFU exercises), implemented to be suitable for students of science-based degree programs, it offers a wide and timely introduction to the basic principles, theoretical and experimental of general chemistry, with frequent references to the real world. We expect, as learning results: i) understanding of the atomic model and its application to electronic configurations and the periodic table; ii) the thermochemical aspects and treated kinetic; iii) the theory of acids and bases; iv) chemical balance. Not to be neglected are the abilities in i) drawing Lewis structures; ii) predict the stereochemistry by VSEPR theory; iii) represent molecular orbital diagrams for simple diatomic molecules; iv) perform simple calculations in stoichiometry (including the reactions) balance. Finally, it is essential to learn to use periodic properties, intermolecular interactions, concepts of thermodynamics, kinetics and chemical equilibrium for the interpretation of wide phenomenology of general chemistry.

The Module A of the course is divided into 7 credits, equal to 56 hours, intended for the illustration of the program and theoretical explanations through lectures and in 2 credits, equal to 24 hours, in which exercises are carried out relating to the topics illustrated in the course. and which are completely similar to those that are provided in the exam tests. The main contents of the Module A are summarized as follows:
1. Definitions of matter, states of aggregation, element, compound, mixture, atom isotope.
2. Evolution of the atomic model. Elements of quantum mechanics: Schroedinger wave equation for hydrogen-like and electron atoms; atomic orbital; electron spin; Electronic configurations of the elements.
3. The periodic table and periodic properties: atomic radii, ionic, metallic, covalent; ionization energy, electron affinity, electronegativity.
4. The ionic bond: lattice energy, Born-Haber cycle. The covalent bond: Lewis formulas and their exceptions; partially polar covalent bond, dative and coordinative. Theory ''Valence Shell Electron Pair Repulsion''. Hybrid orbital bonding model. Molecular orbital model. The metallic bond: Sea theory of electrons; band theory for metals and semiconductors.
5. United liquid, solid and gaseous. Phase transitions and phase diagrams.
6. Chemical thermodynamics: enthalpy, entropy, Gibbs free energy; first, second and third law of thermodynamics.
7. Chemical equilibrium: thermodynamic equilibrium constants; Le Chatelier''s principle.
8. Chemical kinetics: reaction time; reaction of the first order, second, zero; Arrhenius equation; theory ''collisions'' and ''activated complex''.
9. Acids and bases: Arrhenius definitions, Broensted, Lewis; acid-base; ionization constant of the acid and base; pH scale. pH of aqueous solutions of strong acids, weak acids,
strong bases, of weak bases; titrations.
10. Basics of radiochemistry and nuclear chemistry.
11. Solubility equilibria in water. Sparingly soluble salts: the effect common ion; effect of pH on the dissolution of a salt in aqueous solution.
12. Elements of electrochemistry.
13. Stoichiometry: the relationship between mass and mole; the balance of the reactions; preparing non-reactive or reactive solutions; conducting reactions in the absence or in the presence of limiting agent.

The teaching activities of Module A consist of lectures and exercises

Every day at the teacher's office, by appointment made by e-mail at least on the day before that of the desired reception.