CELLULAR BIOCHEMISTRY, HUMAN SYSTEMATICS
Prerequisites
The required knowledge are the basic concepts of general and organic chemistry, general biology and cytology.
Objectives and expected results
The course target is the acquisition by students of the fundamentals regulating the metabolism of molecules of biologic relevance. The student will be guided to the understanding of the mechanisms that go under the generic name of metabolism, the processes of production and use of energy, the role of the signals (hormones, cytokines, growth factors, etc) in physiology and pathology. The student will learn the function of Biochemistry in clinical medicine, in diagnostic applications and drug therapy, with a learning addressed to the specificities of the profession. The course also aims to educate the student to know the biochemical approaches that have been used to define biological molecules as targets for the pharmacological activity of drugs and to know how to research independently the scientific information.
Content and course program cELLULAR AND SYSTEMIC HUMNA BIOCHEMISTRY
Chemistry, physical, genetic and evolutionary fundamentals
Water: Weak interactions of acqueous systems, water ionization, weak acids and bases, pH in buffer solutions, water as reagent, Integration of living organisms in water.
Carbohydrates: definitions and classification of aldose and ketoses. Cyclic and Linear molecules. Complex sugars (hexosamine and sialic acid). Disaccharides with biologic relevance (sacarose, maltose, lactose, cellobiose). Structural omopolysaccharides: cellulose; deposit omopolysaccharides.: starch and glycogen. Heteropolysaccharides: glycosaminoglycans.
Proteins: Chemical classification of amino acids. Carboxylic and amino groups reactivity, R and S (D or L) configuration and their biological relevance; Peptidic bond and its chemical-physical characteristics; protein structures: primary, secondary, tertiary and quaternary. Protein function: enzymes and enzymic kinetics, inhibition, covalent and non covalent regulation of enzymes.
Lipids: Simple lipid, fatty acids, classification. Role of double bond in molecular stability. Isomery, Complex lipids: triglycerides, glicerophospholipids, sphingolipids. Biological membrane structure. Cholesterol and its derivates, Glycoproteins, Structural organization of biological membranes, signaling throughout biological membrane: receptors and second messengers.
Oxygen transporters: structural and functional properties of myoglobin and hemoglobin.
Metabolism: Introduction and general concepts; bioenergy, ATP-ADP system as Energy transfer between catabolism and anabolism. Molecular basis of energy content of ATP. Substrate phosphorylation, Energy charge and its role in metabolism regulation, Respiratory chain and oxidative phosphorylation, Glucose activation, Glycogen metabolism and its control mechanisms, Glycolysis and its energy balance, Shunt of hexose monophosphate its biological role and regulation, Glycogen metabolism, Oxidative decarboxylation of piruvic acid. Gluconeogenesis nad its control. Fatty acid oxidation, ketonic bodies, Biosynthesis of lipids and cholesterol and their regulation, Krebs cycle and its energy balance with control. Anaplerotic reactions. Amino acid metabolism; transamination and transdesamination. Defensive mechanisms against ammonia, glutamine biosynthesis and urea cycle. Metabolic adaptation during starvation.
Heme and bilirubin metabolism.
Hormones: general properties and mechanisms. Hormones functions of hypothalamus hypophysis axis, steroids, insulin, glucagon, adrenaline.
Teaching activities
Frontal lessons
Textbook and teaching material
Lehninger Biochemistry
Devlin Biochemistry
Exam
oral